Simple and Reliable Separations

New resin technologies to facilitate chemical separations.

BACKGROUND & MOTIVATION

Radioisotope production, precious metal recovery, environmental remediation, and nuclear waste processing all benefit from efficient separations chemistry.

INNOVATION

New resin designs to easily recover precious metals.

New soft donor extractants: very high d-block selectivity. Stable for repeated use!

- Extremely high precious metal selectivity. Recovers platinum, silver, palladium at high percentages.

- Useful for commercially valuable radioisotope separations:
 - Thorium/protacontium: promising cancer treatment!
 - Niobium/zirconium: New PET agent.

DESCRIPTION

Extractant material and unfunctionalized resin.

Interactions between the extractant and target elements provide separation: wide array of potential extractant/resin combinations are possible.

Functionalized resin.

Functionalized resin is loaded on column for separations.

ANTICIPATED IMPACT

New resin designs provide novel tools to a diverse user base.

- Soft donor chemistry provide selectivity to facilitate new separations.
- High recovery of many precious metals!

Optimization of conditions

- Determine substrate scope of various resins.
- Optimize loading and separation procedures (e.g. acid concentrations, co-eluents, etc.).
- Identify commercial needs. How much Pt is lost? What is the state of the art?
- Development of additional resin technologies.

Potential End Users:

- Improved separations benefit a wide array of industrial and government users, from medical isotope production and nuclear forensics to heavy metal separations (e.g. catalyst recovery in industrial catalysis and water quality).

PATH FORWARD

- New IP: Useful for commercially valuable radioisotope separations:
 - Thorium/protacontium: promising cancer treatment!
 - Niobium/zirconium: New PET agent.

Current Technology Readiness Level (TRL): 3

- DGTA resin synthesized and preliminary tests completed.
- Lab scale separations demonstrated.

Point of Contact:

Benjamin W. Stein, Chemistry Division, 505-695-3223
bstein@lanl.gov