Capturing the Fluorescence Lifetime

OVERVIEW:

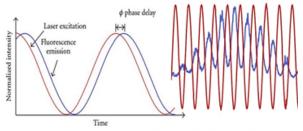
Among the extensive stratum of flow cytometry efforts for sorting, counting, and analysis of cells, there exists no commercial strategies for time-dependent multiparametric data acquisition. Dr. Jessica P. Houston and Mr. Mark Naivar developed techniques to measure a new and reliable fluorescence decay kinetics, "fluorescence lifetime," to expand the capabilities of a conventional Flow Cytometer.

Cells exhibit distinct changes in the fluorescence lifetime with respect to changes in intracellular environment, which aids clinicians/scientists in determining the fluorescence lifetime without modifying the flow cytometry paradigm.

POTENTIAL APPLICATIONS:

Flow cytometry is used worldwide to analyze biological samples.

- Hospitals and clinics
- National laboratories involved in research and development of biomedical engineering tools
- Biomedical research centers, including National Institutes of Health, National Cancer Institute Center, and others


VALID INVENTION:

Measured small delays on large pulses, delays from real samples, and evidence that the delays measured are related to the fluorescence lifetime.

MARKET SIZE:

The market for flow cytometry products is expected to reach \$4.3 billion globally by 2015, with instruments alone covering \$2.2 billion.

Frequency domain method: measure the delay (phase shift) between excitation and emission

The time delay is proportional to the lifetime

INVENTOR(S) EXPERTISE

Dr. Jessica P. Houston

Assistant Professor, Chemical Engineering New Mexico State University

Mark Naivar

Co-Founder, DarklingX LLC

Property of Arrowhead Center. Do not duplicate/distribute.

For more information please contact: Terry Lombard at 575.646.2791 or tlombard@nmsu.edu

